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ABSTRACT

Sylvia is a triple asteroid system located in the main belt. We report new adaptive optics observations of this system
that extend the baseline of existing astrometric observations to a decade. We present the first fully dynamical
three-body model for this system by fitting to all available astrometric measurements. This model simultaneously
fits for individual masses, orbits, and primary oblateness. We find that Sylvia is composed of a dominant central
mass surrounded by two satellites orbiting at 706.5 ± 2.5 km and 1357 ± 4.0 km, i.e., about 5 and nearly 10
primary radii. We derive individual masses of 1.484+0.016

−0.014 ×1019 kg for the primary (corresponding to a density
of 1.29 ± 0.39 g cm−3), 7.33+4.7

−2.3 ×1014 kg for the inner satellite, and 9.32+20.7
−8.3 ×1014 kg for the outer satellite.

The oblateness of the primary induces substantial precession and the J2 value can be constrained to the range of
0.0985–0.1. The orbits of the satellites are relatively circular with eccentricities less than 0.04. The spin axis of the
primary body and the orbital poles of both satellites are all aligned within about 2 deg of each other, indicating a
nearly coplanar configuration and suggestive of satellite formation in or near the equatorial plane of the primary.
We also investigate the past orbital evolution of the system by simulating the effects of a recent passage through 3:1
mean-motion eccentricity-type resonances. In some scenarios this allow us to place constraints on interior structure
and past eccentricities.
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1. INTRODUCTION

(87) Sylvia is a triple asteroid residing in the main belt, with a
heliocentric semimajor axis of 3.5 AU, an eccentricity of 0.085,
and an inclination of 11◦ relative to the ecliptic. Sylvia’s outer
satellite, named Romulus, was discovered in 2001 using the W.
M. Keck Telescope (Brown & Margot 2001; Margot & Brown
2001) and was also detected in Hubble Space Telescope (HST)
images (Storrs et al. 2001). The inner satellite, Remus, was not
discovered until the advent of improved adaptive optics systems
in 2004 using the European Southern Observatory’s Very Large
Telescope (VLT) (Marchis et al. 2005). The diameter of the
primary has been estimated at ∼280 km through shape fits to
adaptive optics images (Marchis et al. 2005); this estimate is
consistent with stellar occultation observations (Lin et al. 2009).
Assuming this primary size, approximate sizes for the individual
satellites have been estimated by adopting the same albedo as
the primary and measuring each satellite’s brightness relative to
the primary. The diameter estimates are ∼7 km for Remus and
∼18 km for Romulus (Marchis et al. 2005).

Sylvia was the first triple asteroid system announced, even
though the triple nature of 2002 CE26 was being actively
discussed during the acquisition of the Sylvia observations
(Shepard et al. 2006). Additional discoveries of multiples in
the solar system have followed. They include near-Earth triples
(153591) 2001 SN263 (Nolan et al. 2008) and (136617) 1994 CC
(Brozovic et al. 2009), main belt triples Kleopatra (Descamps
et al. 2011), Eugenia (Merline et al. 1999; Marchis et al.
2007), Balam (Merline et al. 2002; Marchis et al. 2008), and
Minerva (Marchis et al. 2011), and trans-Neptunian systems
(47171) 1999 TC36 (Margot et al. 2005; Benecchi et al. 2010),
Haumea (Brown et al. 2005, 2006), and the Pluto/Charon
system (Weaver et al. 2006).

Following these discoveries, characterization of multiple sys-
tems has unearthed a wealth of information about their fun-
damental physical properties such as masses and densities,
dynamical processes, and constraints on formation and evo-
lutionary mechanisms. Such research has been possible because
we can derive the masses of the individual components of a
triple or higher-multiplicity system by analyzing their mutual
gravitational interactions, which is possible in binary systems
only when reflex motion is detected (Margot et al. 2002; Ostro
et al. 2006; Naidu et al. 2011). These masses in conjunction
with size estimates can provide densities. Using this method,
Fang et al. (2011) performed a detailed analysis of 2001 SN263
and 1994 CC, including masses, densities, and dynamical evo-
lution. Similarly, work on the Pluto/Charon system and dwarf
planet Haumea and its satellites have yielded information about
their physical properties, tidal interactions, and evolutionary
processes (Lee & Peale 2006; Tholen et al. 2008; Ragozzine &
Brown 2009). The high scientific return from studies of binaries
and triples has been reviewed by Merline et al. (2002) and Noll
et al. (2008).

To date, no such dynamical orbit solution nor detailed anal-
ysis has been performed for Sylvia. Previous work by Marchis
et al. (2005) approximated the actual orbits of Remus and
Romulus with individual two-body fits that included primary
oblateness. However, drawbacks of such methods include the
failure to account for third-body perturbations as well as the in-
ability to solve for individual component masses. Additional
researchers based their studies on the published two-body
orbits (Marchis et al. 2005) plus unspecified component mass
assumptions to study Sylvia’s long-term evolution (Winter
et al. 2009; Frouard & Compere 2012), even though compo-
nent masses are undetermined and can span several orders of
magnitude.
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Table 1
Summary of 2011 Observations

UT Date MJD Filter Telescope Detections

2011 Oct 7 55841.1097 H VLT Remus, Romulus
2011 Nov 6 55871.0856 H VLT Romulus
2011 Nov 8 55873.1289 H VLT Remus, Romulus
2011 Nov 10 55875.0451 H VLT Remus, Romulus
2011 Nov 15 55880.0256 H VLT Romulus
2011 Nov 16 55881.0466 H VLT Remus, Romulus
2011 Nov 20 55885.0460 H VLT Romulus
2011 Dec 15 55910.2129 H Keck Remus, Romulus
2011 Dec 15 55910.2288 H Keck Remus, Romulus
2011 Dec 15 55910.2698 H Keck Remus, Romulus
2011 Dec 16 55911.1877 H Keck Romulus
2011 Dec 16 55911.2510 H Keck Romulus
2011 Dec 17 55912.2615 H Keck Remus, Romulus
2011 Dec 18 55913.1972 H Keck Romulus
2011 Dec 18 55913.2035 H Keck Romulus

Notes. Summary of our 2011 adaptive optics observations at VLT and Keck.
Epochs are provided in Universal Time (UT) dates as well as the Modified Julian
Date (MJD). Remus is the inner satellite and Romulus is the outer satellite.

In this work, we report additional Keck and VLT imaging
data for Sylvia (Section 2). Using primary−satellite separations
measured from these data plus published astrometry, we present
a fully dynamical three-body orbital and mass solution for
Sylvia by accounting for mutually interacting orbits as well
as the primary’s nonsphericity (Section 3). Although the orbital
periods of the satellites are near a 8:3 ratio, we do not find
that the system is currently in such a resonance (Section 4). We
also analyze Sylvia’s short-term and long-term future evolution
(Section 5). Lastly, we investigate the past orbital evolution of
Remus and Romulus by modeling passage through the 3:1 mean-
motion resonance (Section 6). A summary of main conclusions
is given in Section 7.

2. OBSERVATIONS

We report new observations of Sylvia in 2011 from both Keck
and VLT, as well as summarize existing observations taken in
2001–2004 using Keck, HST, and VLT. Astrometry derived from
these data sets are used for orbit fits described in the next section
(Section 3).

2.1. New Data in 2011

Our observations in 2011 are summarized in Table 1. In total,
we obtained seven partial nights of service (or “queue”) mode
observing at VLT and four partial nights of visitor mode at
Keck. At the VLT, we used the NACO (NAOS-CONICA) high-
resolution IR imaging camera (Rousset et al. 2003; Lenzen et al.
2003) in its S13 mode using the H filter, with a plate scale
value reported as 0.013221 arcsec pixel−1.4 We used four offset
positions in a box pattern, with an integration time of 120 s
per offset position. These four offset positions sampled the four
quadrants of the CCD to calibrate and mitigate against detector
defects. At Keck, we used NIRC2 (Near Infrared Camera 2)
imaging in the H filter, with a plate scale of 0.009942 arcsec
pixel−1.5 Our Keck observations used four offset positions in a
similar box pattern as with the VLT exposures, with an exposure
time of 60 s per offset position. All observations using both
VLT and Keck were performed with natural guide star adaptive

4 http://www.eso.org/sci/facilities/paranal/instruments/naco/doc
5 http://www2.keck.hawaii.edu/inst/nirc2/genspecs.html

Figure 1. Keck H-band adaptive optics image on 2011 December 15 (corre-
sponding modified Julian Date 55910.2129) of Sylvia with its inner satellite
Remus and outer satellite Romulus. In this image, the primary−Remus sep-
aration is about 0.34 arcsec, and the primary−Romulus separation is about
0.57 arcsec.

(A color version of this figure is available in the online journal.)

optics, using Sylvia as the guide star (its apparent magnitude
varied from V ∼ 11.7 to V ∼ 12.7 throughout the period of our
2011 observations).

We performed basic data reduction analysis for VLT and Keck
images. Each frame (at each dither position) is flat-fielded and
its bad pixels are corrected using a bad pixel mask obtained
from outlier pixels present in all frames. Sky subtraction is
performed by subtracting frames in pairs, where each frame is
subtracted by another frame where the target has been offset. We
performed subpixel two-dimensional Gaussian fitting to obtain
precise centroids of the target in each sky-subtracted frame,
and these centroids were used to align and combine all frames
into one composite image. See Figure 1 for an example of a
composite image obtained using Keck.

At each observation epoch, we detected either one or both
satellites (see Table 1). As the satellites orbit the primary, they
are occasionally obscured by the bright primary and this occurs
most often for the inner satellite Remus. In cases where only
one satellite is detected, we determined the identification of the
satellite through orbit fitting. An incorrect identification of a
satellite is easily shown as an obvious outlier in orbit fits. In all
cases examined here, when only one satellite is detected, it is
the outer satellite Romulus.

For all satellite detections, we measure the astrometric posi-
tions of the satellite relative to the primary by taking the dif-
ference between the centroids of the primary and the satellite.
Specifically, we measure the position angle (degrees east of
north) and separation of the satellite relative to the primary.
These measurements are performed on the reduced composite
image obtained at each observation epoch. These measurements
are provided in Table 2.

2.2. Existing Data from 2001–2004

Publicly available astrometry data sets for Sylvia include
Keck data in 2001 (Margot & Brown 2001), HST data in 2001
(Storrs et al. 2001), and VLT data in 2004 (Marchis et al.
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Table 2
Astrometry from 2011 Data

Satellite MJD P.A. Sep. x y σ

(deg) (arcsec) (arcsec) (arcsec) (arcsec)

Remus 55841.1097 265.07 0.392 0.391 −0.034 0.0132
Remus 55873.1289 75.25 0.226 −0.218 0.057 0.0132
Remus 55875.0451 270.33 0.342 0.342 0.002 0.0132
Remus 55881.0466 87.23 0.381 −0.381 0.018 0.0132
Remus 55910.2129 268.16 0.341 0.341 −0.011 0.0099
Remus 55910.2288 267.49 0.343 0.342 −0.015 0.0099
Remus 55910.2698 267.80 0.325 0.325 −0.012 0.0099
Remus 55912.2615 84.22 0.349 −0.348 0.035 0.0099

Romulus 55841.1097 264.09 0.702 0.698 −0.072 0.0132
Romulus 55871.0856 92.92 0.369 −0.368 −0.019 0.0132
Romulus 55873.1289 271.41 0.606 0.606 0.015 0.0132
Romulus 55875.0451 88.92 0.643 −0.643 0.012 0.0132
Romulus 55880.0256 284.49 0.183 0.177 0.046 0.0132
Romulus 55881.0466 266.17 0.671 0.670 −0.045 0.0132
Romulus 55885.0460 264.34 0.357 0.355 −0.035 0.0132
Romulus 55910.2129 264.30 0.571 0.568 −0.057 0.0099
Romulus 55910.2288 263.66 0.572 0.568 −0.063 0.0099
Romulus 55910.2698 265.11 0.541 0.539 −0.046 0.0099
Romulus 55911.1877 95.41 0.392 −0.391 −0.037 0.0099
Romulus 55911.2510 92.09 0.446 −0.446 −0.016 0.0099
Romulus 55912.2615 78.76 0.423 −0.415 0.082 0.0099
Romulus 55913.1972 272.80 0.528 0.528 0.026 0.0099
Romulus 55913.2035 272.09 0.521 0.521 0.019 0.0099

Notes. Astrometry measured from 2011 data for Remus (inner) and Romulus (outer) at specific MJD epochs.
We measured the position angle (P.A.; degrees east of north) and the separation of each satellite relative to the
primary. These values are converted to positions x and y, where the positive x-direction is toward the west and the
positive y-direction is toward the north. We assign the instrument plate scale as the positional uncertainty σ for x
and y.

2005). For the 2004 VLT data, the paper by Marchis et al.
(2005) contains their astrometric measurements of the satellites
relative to the primary expressed as x–y pairs, where they define
x and y as positive in the east and north directions, respectively.
However, they failed to indicate the signs (positive or negative)
for their x and y measurements of Remus. In addition, at one
epoch (MJD 53,253.1738) their published astrometry gives
Remus an implausibly large separation from the primary. To
fix these inaccuracies, we fit orbits to the astrometric points and
have determined the correct signs for their measurements (note
that we define x to be positive in the west direction). At epoch
MJD 53,253.1738, it appears that they have confused Remus and
Romulus, and so we have swapped measurements for these two
bodies at that epoch. These corrections, along with astrometry
for the Keck and HST data in 2001, are given in Table 3.

In total, our baseline of observations spans a decade from
2001 to 2011. For Remus, which is never visible in data
obtained prior to 2004, our 2011 observations add an additional
8 epochs to the existing 12 epochs for a total of 20 epochs of
astrometry, extending the baseline of observations from about
1 month to 7 years. For Romulus, our 2011 observations add an
additional 15 epochs to the existing 30 epochs for a total of 45
epochs of astrometric measurements, extending the baseline of
observations from 3 years to 10 years. All of these astrometry
positions, given in Tables 2 and 3, are used for dynamical three-
body orbit fits described in the next section.

3. ORBITAL AND MASS SOLUTION

We fit a fully dynamical three-body model to the astrometric
measurements described in the previous section, taking into
account mutually interacting orbits. Our model simultaneously

fits for 16 parameters, including a set of six orbital parameters
per satellite (semimajor axis, eccentricity, inclination, argument
of pericenter, longitude of the ascending node, and mean
anomaly at epoch), three masses for the three bodies, and the
parameter J2 representing the oblateness of the primary. The
semimajor axis and eccentricity describe the size and shape of
the orbit, both the inclination and longitude of the ascending
node describe the orientation of the orbit, the argument of
pericenter describes the location of pericenter (minimum radial
distance of the orbit), and the mean anomaly at epoch can be
used to determine the location of the satellite in its orbit at a
particular time.

We describe these fitted parameters in more detail. The or-
bital elements of each satellite are relative to the primary body
and are defined with respect to the Earth equatorial reference
frame of epoch J2000. Given that these orbital elements change
over time due to perturbations in the three-body system, these
are defined as osculating orbital elements. They are valid at a
specific epoch, MJD 53227.0, corresponding to UT date 2004
August 10 00:00. The fitted masses are derived assuming G =
6.67 × 10−11 m3 kg−1 s−2 for the gravitational constant. The
primary’s non-spherical nature, which can introduce additional
non-Keplerian effects, is represented by an oblateness coeffi-
cient J2. The distribution of mass within the primary can be
represented by terms in a spherical harmonic expansion of its
gravitational potential, and the quadrupole term J2 is the lowest-
order gravitational moment. J2 is related to the primary’s three
principal moments of inertia (C � B � A) as

J2 = C − 1
2 (A + B)

MR2
, (1)
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Table 3
Existing Astrometry from 2001–2004 Data

Satellite MJD P.A. Sep. x y σ Reference
(deg) (arcsec) (arcsec) (arcsec) (arcsec)

Remus 53227.3042 . . . . . . −0.411 0.002 0.0132 3
Remus 53249.2470 . . . . . . −0.239 −0.101 0.0132 3
Remus 53249.2532 . . . . . . −0.228 −0.101 0.0132 3
Remus 53251.2985 . . . . . . 0.246 0.107 0.0132 3
Remus 53252.3627 . . . . . . 0.421 0.000 0.0132 3
Remus 53253.1738 . . . . . . −0.445 −0.025 0.0132 3
Remus 53255.1091 . . . . . . 0.435 0.002 0.0132 3
Remus 53256.2886 . . . . . . 0.268 −0.072 0.0132 3
Remus 53261.1432 . . . . . . −0.394 0.033 0.0132 3
Remus 53261.2298 . . . . . . −0.430 −0.008 0.0132 3
Remus 53263.2146 . . . . . . 0.412 0.004 0.0132 3
Remus 53263.2202 . . . . . . 0.416 0.001 0.0132 3

Romulus 51958.4810 97.00 0.564 −0.559 −0.069 0.0168 1
Romulus 51959.3660 60.30 0.425 −0.369 0.211 0.0168 1
Romulus 51959.4200 54.10 0.383 −0.310 0.225 0.0168 1
Romulus 51960.4010 271.90 0.615 0.614 0.020 0.0168 1
Romulus 51962.4070 88.30 0.696 −0.696 0.021 0.0168 1
Romulus 51963.5700 306.00 0.330 0.267 0.194 0.0250 2
Romulus 53227.3042 . . . . . . −0.377 0.144 0.0132 3
Romulus 53246.3105 . . . . . . −0.785 −0.097 0.0132 3
Romulus 53246.3659 . . . . . . −0.755 −0.117 0.0132 3
Romulus 53249.2470 . . . . . . −0.547 0.139 0.0132 3
Romulus 53249.2532 . . . . . . −0.555 0.136 0.0132 3
Romulus 53249.3516 . . . . . . −0.654 0.109 0.0132 3
Romulus 53251.2985 . . . . . . 0.763 −0.058 0.0132 3
Romulus 53252.3627 . . . . . . 0.156 0.214 0.0132 3
Romulus 53253.1738 . . . . . . −0.791 0.049 0.0132 3
Romulus 53253.3445 . . . . . . −0.834 −0.018 0.0132 3
Romulus 53254.1603 . . . . . . −0.172 −0.214 0.0132 3
Romulus 53255.1091 . . . . . . 0.835 0.003 0.0132 3
Romulus 53255.3928 . . . . . . 0.793 0.105 0.0132 3
Romulus 53256.2886 . . . . . . −0.272 0.202 0.0132 3
Romulus 53259.2030 . . . . . . 0.683 0.165 0.0132 3
Romulus 53261.1432 . . . . . . −0.546 −0.186 0.0132 3
Romulus 53261.2298 . . . . . . −0.449 −0.205 0.0132 3
Romulus 53262.1602 . . . . . . 0.724 −0.073 0.0132 3
Romulus 53262.2759 . . . . . . 0.786 −0.035 0.0132 3
Romulus 53262.2815 . . . . . . 0.791 −0.032 0.0132 3
Romulus 53263.2146 . . . . . . 0.221 0.230 0.0132 3
Romulus 53263.2202 . . . . . . 0.215 0.231 0.0132 3
Romulus 53297.0193 . . . . . . −0.752 −0.038 0.0132 3
Romulus 53298.0064 . . . . . . 0.101 −0.186 0.0132 3

Notes. Existing astrometry measured from 2001–2004 data for Remus (inner) and Romulus (outer) at specific MJD epochs, taken
from (1) Margot & Brown 2001; (2) Storrs et al. 2001; and (3) Marchis et al. 2005 (the latter with corrections; see the text). An
ellipsis ( · · · ) means that the value was not reported. Measurements include the position angle (P.A.; degrees Earth of north) and the
separation of each satellite relative to the primary. These values can be converted to positions x and y, where the positive x-direction
is toward the west and the positive y-direction is toward the north. As in Table 2, we assign the instrument plate scale as the positional
uncertainty σ for x and y.

where the denominator is a normalization factor including the
primary’s mass M and equatorial radius R (i.e., Murray &
Dermott 1999). In all of our fits, the radius R is assumed to be
140 km. The inclusion of J2 in our fits also requires a primary
spin pole direction to be specified, and typically we fix the
primary pole to the orbit pole of the most massive satellite.

With a total of 16 parameters and 130 data measurements
(Tables 2 and 3), we have 114 degrees of freedom (number
of data points minus the number of parameters). We adopt a
least-squares approach to this problem by minimizing the chi-
square χ2 statistic, where χ2 = ∑

i(Oi − Ci)2/σ 2
i for a set of

N (1 � i � N ) observations with σi uncertainties and observed
Oi and computed Ci values. We utilize a Levenberg–Marquardt
nonlinear least-squares algorithm written in IDL called mpfit
(Markwardt 2009). With 16 parameters, this is a very computa-
tionally intensive problem, given the large amount of parameter
space to explore as well as the computationally expensive three-
body orbital integrations that need to be performed. Especially
for least-squares problems with a large number of parameters,
it is impossible to guarantee that a global χ2 minimum has been
found. More often than not, the minimization procedure con-
verged on a local minimum and therefore it was necessary to
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re-fit with different starting conditions. In total, we started the
fitting procedure with tens of thousands of sets of starting condi-
tions, and we performed up to 20 iterations (equaling hundreds
of χ2 evaluations) for each set of starting conditions.

These starting conditions included plausible ranges of param-
eter space for fitted parameters. We explored all possible values
of eccentricity (0–1), orbital angles (0◦–360◦), semimajor axes
(500–900 km for Remus and 1100–1500 km for Romulus), and
J2 values (0–0.2). Starting values ranged from on the order of
1018 to 1020 kg for the primary’s mass and from on the order
of 1013 to 1017 kg for each satellite’s mass. Ranges for satellite
masses covered all possible mass values by sampling various
size (Remus: ∼5–9 km in diameter, Romulus: ∼14–22 km in
diameter; Marchis et al. 2005) and density (0.1–10 g cm−3)
ranges.

In addition, we also explored various primary spin axis
orientations for the primary. This was possible with this data set
because the perturbations due to the oblateness of the primary
are detectable, and because those perturbations depend on the
spin axis orientation. These effects are captured by three fitted
parameters: two for the primary spin axis orientation, and one for
the value of J2. We systematically explored the entire celestial
sphere for the primary spin axis orientation, but we also tested
specific poles that had been favored by previous studies. These
specific spin axis orientations include R.A. = 355◦ and decl. =
82◦ (close to satellite orbital poles) suggested from light curve
analysis (Kaasalainen et al. 2002), R.A. = 68◦ and decl. =
78◦ from a compilation of previous data (Kryszczyńska et al.
2007), and R.A. = 100◦ and decl. = 62◦ derived using adaptive
optics imaging data (Drummond & Christou 2008). From these
fits, we find that primary spin poles misaligned with satellite
orbit poles do not provide good solutions (such as poles
by Kryszczyńska et al. 2007; Drummond & Christou 2008).
Instead, we determined that the best-fit spin axis direction was
nearly aligned with the satellites’ orbital poles, which are almost
coplanar. As a result, for nearly all fits, we aligned the primary’s
spin pole to the orbital pole of the most massive satellite.
The fact that both satellites orbit in or near the equator of the
primary provides an important constraint on satellite formation
mechanisms.

For each set of starting conditions, our orbit-fitting method
proceeded as follows. First, we performed N-body numerical
integrations using the Mercury integration package (Chambers
1999), which takes into account mutually interacting orbits
as well as the effects due to primary oblateness. We used a
Bulirsch–Stoer algorithm for our integration method, which is
computationally slow but accurate, and we chose an initial time
step that samples finer than 1/25th of the innermost orbital
period. These three-body integrations need to cover all epochs
of observation, which span about a decade (2001–2011). From
these integrations, we determined the positions and velocities of
each satellite relative to the primary at all epochs of observation
(corrected for light travel time) by interpolation. The length and
resolution of these integrations were the limiting factors in the
computational speed of each minimization. Second, we obtained
the vector orientation of Sylvia’s position relative to an observer
on Earth for all epochs of observation (again, corrected for light
time), taking into account aspect variations due to geocentric
distance variations and Sylvia’s motion across the sky. Third, we
used these orientations to project and compute primary−satellite
separations on the plane of the sky at each observation epoch.
These computed separations were compared with our observed
separations (Tables 2 and 3) to determine the χ2 goodness-of-

Table 4
Best-fit Parameters and 1σ Uncertainties

Parameter Best Fit Formal 1σ Adopted 1σ

Remus (inner)

Mass (1014 kg) 7.333 ±0.717 +4.7
−2.3

a (km) 706.5 ±0.007 +2.5
−2.5

e 0.02721 ±0.010 +0.013
−0.012

i (deg) 7.824 ±0.667 +0.68
−0.82

ω (deg) 357.0 ±15.14 . . .

Ω (deg) 94.80 ±5.000 +5.2
−5.8

M (deg) 261.0 ±13.43 . . .

P (days) 1.373 . . . +0.010
−0.010

Romulus (outer)

Mass (1014 kg) 9.319 ±5.406 +20.7
−8.3

a (km) 1357 ±0.059 +4.0
−4.0

e 0.005566 ±0.004 +0.005
−0.004

i (deg) 8.293 ±0.210 +0.21
−0.29

ω (deg) 61.06 ±18.74 . . .

Ω (deg) 92.60 ±1.339 +2.9
−1.6

M (deg) 197.0 ±18.75 . . .

P (days) 3.654 . . . +0.025
−0.024

Primary

Mass (1019 kg) 1.484 ±0.00017 +0.016
−0.014

J2 0.09959 ±0.00084 +0.0004
−0.0010

R.A. (deg) 2.597 ±1.339 +3.4
−1.6

Dec. (deg) 81.71 ±0.210 +0.29
−0.71

Notes. Best-fit parameters including individual masses, orbital parameters
(semimajor axis a, eccentricity e, inclination i, argument of pericenter ω,
longitude of the ascending node Ω, and mean anomaly at epoch M), primary
oblateness J2, and primary spin pole (R.A. and decl.). These orbital elements
are valid at epoch MJD 53227 in the equatorial frame of J2000. We derived an
effective orbital period P from the best-fit values of semimajor axis and mass of
the considered satellite plus all interior masses. Two types of uncertainties are
listed: formal 1σ statistical errors are derived from the least-squares covariance
matrix, and adopted 1σ errors are obtained for select parameters through a more
rigorous method (see the text). For parameters ω and M with no adopted 1σ

errors, we recommend using the formal 1σ errors.

fit statistic. These methods benefit from the heritage of over a
decade of work on orbit fitting as well as our work on fitting
three-body models to data sets of triples, including near-Earth
asteroids (Fang et al. 2011).

Table 4 shows the best-fit orbit solution. The chi-square is
73.55, and with 114 degrees of freedom, this corresponds to a
reduced chi-square of 0.6452. This indicates that the fit is very
good, and that uncertainties were likely slightly overestimated.
This best-fit solution is also visually illustrated in an orbit
diagram in Figure 2, where the orbits are projected onto the
primary’s equatorial plane. Residuals of the best-fit solution are
shown in Figure 3 for Remus and Figure 4 for Romulus, where
each figure’s panel shows the residuals for a particular year of
observation (2001, 2004, or 2011). The residual is defined as
χi = (Oi − Ci)/σi for observation epoch i.

There are two types of 1σ uncertainties given in Table 4:
formal and adopted. The formal 1σ uncertainties are obtained
using the covariance matrix resulting from the least-squares fit-
ting procedure. These formal 1σ uncertainties may not always
be accurate representations of the actual uncertainties. Accord-
ingly, the adopted 1σ uncertainties are obtained through a more
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Figure 2. Diagram of best-fit orbits for satellites Remus (inner) and Romulus
(outer), projected onto the primary’s equatorial plane. These orbits show the
actual trajectories from numerical integrations. The relative sizes of the bodies
are shown to scale using green circles, assuming these diameters: 10.6 km for
Remus, 10.8 km for Romulus, and 280 km for the primary. All bodies are located
at their positions at MJD 53227 with the primary centered on the origin.

(A color version of this figure is available in the online journal.)

rigorous method by determining each parameter’s 1σ confi-
dence levels (e.g., Cash 1976; Press et al. 1992). To determine
each parameter’s uncertainties, we hold the parameter fixed at
a range of plausible values while simultaneously fitting for all
other parameters. Since one parameter is held fixed at a time,
a 1σ confidence region is prescribed by the range of solutions
that yield chi-square values within 1.0 of the lowest chi-square.
This is a computationally intensive process, and we performed
this method to determine uncertainties for the primary’s pole
(R.A. and decl.) as well as for each fitted parameter with the
exception of the arguments of pericenter and mean anomalies at
epoch. We consider the adopted uncertainties to be more accu-
rate representations of the actual uncertainties than the formal
uncertainties. We note that these adopted uncertainties do not
preclude any systematic errors that may have occurred, such as
during the measurement of astrometry from the images.

Most solve-for parameters are well constrained by the data,
with formal uncertainties of 10% or less, and as low as ∼1% for
the mass and oblateness of the primary. One notable exception is
the mass of Romulus. The formal uncertainty on this parameter
amounts to ∼60% of the nominal value, indicating that it is
not well constrained by the data. As for orbit pole orientations,
they are determined to ∼1.5 deg uncertainty (1σ ) for Remus
and ∼1 deg for Romulus, and the primary spin axis orientation
is determined to ∼1 deg. Given the near-circular nature of the
orbits, the arguments of pericenter ω and hence mean anomalies
at epoch M are not well defined (but the satellite positions, or
ω + M , are in fact well defined).

The best-fit orbital solution indicates that the satellites follow
relatively circular orbits at semimajor axes of about 5 and nearly
10 primary radii. The mutual inclination (relative inclination)
between the orbital planes of the satellites is 0.◦56+1.5

−0.5. The
low mutual inclination indicates that the orbital planes are
nearly coplanar. This alignment supports a satellite formation
mechanism in which the satellites would tend to remain close
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Figure 3. Residuals (O-C) for Remus-Sylvia angular separations in the west
and north directions corresponding to the best-fit orbit (Table 4). The two panels
represent distinct epochs of observations (2004 and 2011).

to the equatorial plane of the primary (e.g., a subcatastrophic
collision). The alignment is likely indicative of formation
conditions rather than evolution, as tidal damping of inclinations
can be a lengthy process. Assuming various models (monolithic
or rubble pile) for tidal dissipation, inner satellite Remus could
take on the order of 108 years up to the age of the solar system
to damp from 2 deg to 1 deg.

Information about size, shape, and density can be derived
from our best-fit orbital solution. We obtain a density of 1.29 ±
0.39 g cm−3 for the primary by assuming a diameter of 280 km
(lacking realistic error bars on the size of the primary, we
assumed volume uncertainties of 30%). The density error is
dominated by the volume error since the mass of the primary
is known to ∼1%. The primary is also oblate, with a well-
constrained J2 value of about 0.09959 which corresponds to an
axial ratio c/a = 0.7086 if we assume equatorial symmetry and
uniform density. Size estimates for Remus and Romulus can be
obtained by assuming that they have a bulk density equal to that
of the primary, and by considering the adopted 1σ confidence
interval of satellite masses. We find radii of ∼4.5–6.1 km for
Remus and ∼2.6–8.2 km for Romulus. These ranges would have
to be modified if the density of the primary or of the satellites
was different from the nominal value assumed here, but only
slightly as the dependence is ρ−1/3.
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Figure 4. Residuals (O-C) for Romulus-Sylvia angular separations in the west
and north directions corresponding to the best-fit orbit (Table 4). The three
panels represent distinct epochs of observations (2001, 2004, and 2011).

We compare our best-fit solution in Table 4 to the solution
previously reported by Marchis et al. (2005). We find close
agreement in semimajor axes (within uncertainties). The ec-
centricities are marginally consistent. Orbital plane orientations
differ by about �2 deg. The largest discrepancy between our
orbital solutions is the value of J2. Our fits yield a very well-
constrained J2 value with a 1σ confidence range of 0.0985–0.1.

Marchis et al. (2005) report two estimates for J2 of 0.17 ± 0.05
and 0.18 ± 0.01, inconsistent with our value. Using axial ratios
from light curve analysis (Kaasalainen et al. 2002) and a uniform
density assumption, we find J2 = 0.1, in excellent agreement
with our dynamical value.

There are several possibilities to explain the discrepancies
between our orbital solutions and those of Marchis et al. (2005).
First, our orbital fits are based on a much longer baseline
of observations (2001–2011) than their data set (only 2004).
Second, our orbital solution is the result of fully dynamical,
N-body orbital fits that simultaneously fitted for all parameters
in the system, using numerical integrations taking into account
mutually interacting orbits and primary oblateness. The fit
obtained by Marchis et al. (2005) used two-body approximations
(one satellite’s orbit is fit at a time, ignoring effects by the
other satellite). These differences in data set and technique
allowed us to obtain better-constrained orbital parameters with
smaller uncertainties as well as individual masses, which were
not previously known.

4. EXAMINATION OF MEAN-MOTION
RESONANCE OCCUPANCY

The orbital periods (ratio ≈ 2.661) of our best-fit solution
in Table 4 have a ratio near 8:3 (ratio ≈ 2.667). To determine
resonance occupation, we search for librating resonance argu-
ments using a general form of the resonance argument (Murray
& Dermott 1999)

φ = j1λ2 + j2λ1 + j3�2 + j4�1 + j5Ω2 + j6Ω1. (2)

In Equation (2), φ is the resonant argument or angle, λ is
the mean longitude, � is the longitude of pericenter, and Ω
is the longitude of the ascending node. Subscripts 1 and 2
represent the inner and outer satellites, respectively. The ji
values (where i = 1–6) are integers and their sum must equal
zero (d’Alembert’s rule). For the fifth-order 8:3 mean-motion
resonance, j1 = −8 and j2 = 3 so we search through integer
values (−30 to +30) of the remaining ji values to determine
if there is libration of the resonant argument over timescales
ranging from 10 to 100 years. To perform this search, we
determined the evolution of the relevant angles in Equation (2)
using three-body numerical integrations with the best-fit orbital,
mass, and J2 solution in Table 4. We do not find any librating
resonance arguments, and therefore we conclude that the current
system is not in the 8:3 mean-motion resonance.

5. SHORT-TERM AND LONG-TERM STABILITY

In this section, we discuss the results of forward N-body
integrations of the best-fit orbital solution at MJD 53,227 given
in Table 4. We perform short-term (50 yr) and long-term (1 Myr)
simulations to determine how the orbital elements fluctuate with
time and to assess the stability of this three-body system. Both
short-term and long-term integrations are performed using a
Bulirsch–Stoer algorithm in Mercury (Chambers 1999) with an
initial time step of 0.05 days, and include the gravitational effects
of the three bodies and the primary’s oblateness. For long-term
integrations, we also include the effect of solar gravitational
perturbations.

The results of our short-term integrations are shown in
Figure 5. This figure illustrates how the semimajor axes and
eccentricities of both satellites evolve over a span of 50 years.
From this figure, we can compute the mean value of orbital el-
ements, in contrast to the osculating orbital elements provided
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Figure 5. Variation of semimajor axis and eccentricity over a 50 year time span.

in Table 4 that are valid at the specific epoch of MJD 53,227.0.
The semimajor axes for both Remus and Romulus have small
oscillations spanning less than 1 km and have mean values of
706.57 km and 1356.83 km, respectively. The mean eccentricity
values are 0.029 for Remus and 0.0074 for Romulus. The ec-
centricity variations are especially apparent for Remus, whose
eccentricity can vary from 0.023 to 0.035. These short-period
fluctuations are due to the effect of the oblateness J2 of the
primary. The force due to the primary’s gravitational field can
be modified to account for primary J2, and this modified force
affects a satellite’s orbit by inducing short-period fluctuations
in the semimajor axis, mean motion, eccentricity, and mean
anomaly. Its effect on eccentricity can be mathematically ap-
proximated as (Brouwer 1959; Greenberg 1981)

Δe ≈ 3J2(Rp/a)2, (3)

where Δe is the maximum eccentricity excursion from minima
to maxima and Rp is the primary’s radius. Plugging in values of
J2 = 0.09959, Rp = 140 km, and a = 706.57 km (Remus)
and 1356.83 km (Romulus), we compute Δe ≈ 0.0117 for
Remus and Δe ≈ 0.00318 for Romulus. These values are
consistent with the maximum excursions seen in numerical
simulations that are plotted in Figure 5. Since Remus has a
smaller separation (∼5 Rp) from the primary than Romulus

(∼9.7 Rp), its perturbation by primary J2 is stronger, hence the
larger eccentricity variations seen in Figure 5. As for precession
of the orbital planes, there is significant precession due to J2
and the presence of the other satellite. For example, Remus’
longitude of pericenter precesses ∼560◦ per year due to J2 and
∼1◦ per year due to Romulus.

The results from our long-term integrations show that this
triple system is stable over 1 Myr, and the variations in
semimajor axis and eccentricity do not noticeably exceed the
fluctuations shown in Figure 5 for the short-term integrations.
Accordingly, we find that Sylvia is in a very stable configuration,
as suggested by its near circular and coplanar orbital state. We
find that the inclusion of the Sun’s gravitational effect does
not appreciably affect the semimajor axes and eccentricities of
Sylvia’s satellite orbits. If we consider Sylvia’s Hill sphere of
gravitational influence, defined as rHill = a�(M/(3M�))1/3 (a�
is the heliocentric semimajor axis, M is the primary’s mass, and
M� is the mass of the Sun), we calculate that the satellites orbit
at ∼1% and ∼2% of the Hill radius. As a result, they are both
well within the primary’s sphere of gravitational dominance
over the Sun.

Our stability results are in agreement with two previous in-
vestigations on Sylvia’s stability. Winter et al. (2009) performed
stability analyses of the system, including the effects of the Sun
and Jupiter. They find that Sylvia is not stable unless the pri-
mary has at least a minimal amount of oblateness (0.1% of their
assumed primary J2 of 0.17). They show that the inclusion of
primary oblateness gives rise to a secular eigenfrequency that
is much faster than those induced by other gravitational pertur-
bations, which provides a stabilizing effect on the satellites’ or-
bital evolution. Frouard & Compere (2012) investigated Sylvia’s
short-term (20 years) and long-term evolution (6600 years) in-
cluding the primary’s non-sphericity (assuming J2 ≈ 0.14) and
solar perturbations. They also varied the semimajor axis and
eccentricity of the satellites’ orbits to determine the extent of
their stability zones. They find that the current configuration of
the system lies in a very stable zone. Authors from both papers
(Winter et al. 2009; Frouard & Compere 2012) mention that the
effect of Jupiter is negligible compared to the effect of the Sun.

6. EVOLUTION OF ORBITAL CONFIGURATION

In this section, we investigate the past orbital evolution of Re-
mus and Romulus. We find that tidal perturbations can cause the
orbits to evolve and to cross mean-motion resonances. This res-
onance passage may perturb orbits by increasing eccentricities.
First we discuss how tidal processes likely caused the satellites
to encounter the 3:1 mean-motion resonance in their past, then
we describe our numerical modeling methods, and lastly we
present plausible past evolutionary pathways as suggested by
our simulation results.

6.1. Tidal Theory

Tidal evolution can cause the semimajor axis of an orbit
to expand due to tides raised on the primary by its satellite
(Goldreich 1963; Goldreich & Soter 1966). Tides raised on
the satellite by the primary have an insignificant effect on the
semimajor axis. The rate of semimajor axis evolution is given
as

da

dt
= 3

kp

Qp

Ms

Mp

(
Rp

a

)5

na, (4)
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where a is the semimajor axis, k is the tidal Love number, Q is
the tidal dissipation factor, M is the mass, R is the radius, and
n is the mean motion. The subscripts p and s denote quantities
for the primary and satellite, respectively. It is likely that tidal
evolution is causing the orbits of Remus and Romulus to expand,
and that their orbits were in a more compact configuration in
the past. We discuss the relative importance of tides compared
to another important evolutionary process (BYORP) at the end
of this subsection.

We expect that orbital expansion by tides is causing the
relative orbits of Remus and Romulus to slowly converge
toward each other. Two orbits are converging if ȧ1/ȧ2 is greater
than one, and here subscripts 1 and 2 represent Remus (inner)
and Romulus (outer), respectively. Using Equation (4), we can
express this criterion as

ȧ1

ȧ2
= M1

M2

(
a2

a1

)11/2

> 1. (5)

Assuming best-fit values for the semimajor axes of Remus and
Romulus (Table 4), their orbits are currently converging as long
as their mass ratio satisfies M1/M2 > 0.0276. Taking into ac-
count the range of the 1σ adopted confidence interval in masses
(from Table 4), we find that this ratio is satisfied in all cases
and therefore we expect that their orbits are converging. The
steep dependence of tidal evolution on semimajor axis causes
the orbit of Remus to expand much faster than the orbit of
Romulus. Given that their orbits are slowly converging over
time, we can determine the most recent mean-motion reso-
nance passage encountered by the satellites. By considering all
first-, second-, third-, and fourth-order resonances (where a
p + q:p resonance is qth order), we expect that the most re-
cent resonance encountered by the system is the second-order
3:1 resonance. Accordingly, in our analysis here we focus on
the 3:1 resonance and its effect on the satellites’ eccentricity
evolution.

We describe how tidal evolution causes the eccentricity of
an orbit to increase or decrease. This is a competing process
between the opposing effects of tides raised on the primary
(eccentricity increases) and tides raised on the satellite (eccen-
tricity decreases). These two opposing effects are contained in
two terms in the equation (Goldreich 1963; Goldreich & Soter
1966)

de

dt
= 57

8

kp

Qp

Ms

Mp

(
Rp

a

)5

ne − 21

2

ks

Qs

Mp

Ms

(
Rs

a

)5

ne, (6)

which gives the evolution of eccentricity e. The variables and
subscripts in Equation (6) are the same as for Equation (4).

We discuss models for the tidal Love number k in
Equations (4) and (6) used for calculations of tidal evolution
in asteroids. These models are dependent on the asteroid’s ra-
dius R. First, we consider the monolith model, where

k ≈ 1.5

1 + 2 × 108
(

1 km
R

)2 , (7)

and this model is appropriate for asteroids that are idealized as
uniform bodies with no voids (Goldreich & Sari 2009). Second,
we consider a rubble pile model by Goldreich & Sari (2009)
with the following Love number formalism:

k ≈ 1 × 10−5

(
R

1 km

)
. (8)
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Figure 6. Tidal Love number models (Equations (7)–(9)) as a function of radius.
Intersections between the k ∝ 1/R model and the other two models occur at
1.58 km and 14.94 km.

(A color version of this figure is available in the online journal.)

Rubble pile models are appropriate for asteroids idealized as
gravitational aggregates. Another rubble pile model is given by
Jacobson & Scheeres (2011), where

k ≈ 2.5 × 10−5

(
1 km

R

)
. (9)

Equation (9) was obtained by fitting to the configurations of
known asteroid binaries and assuming they are in an equilibrium
state with tidal and BYORP effects canceling each other.
Comparisons between these three Love number models are
given in Figure 6.

Here we assume that tidal evolution is a dominant process and
we do not analyze other evolutionary processes such as BYORP
perturbations. BYORP is a radiative effect that is predicted
to cause orbital evolution of a synchronous satellite on short
timescales (Ćuk & Burns 2005; Ćuk 2007) and has not been
observationally verified yet. BYORP effects dominate at larger
semimajor axes, and tides dominate at smaller semimajor axes
(Jacobson & Scheeres 2011). Tides result in an increase of
the semimajor axes, but BYORP can result in an increase or a
decrease, depending on the shapes of the satellites, which are
unknown. For the purpose of our evolution calculations, the
relevant semimajor axis rate is the relative migration rate of
the satellites, and we compare the contributions by tides and
BYORP by calculating |(ȧtides,1 − ȧtides,2)/(ȧbyorp,1 − ȧbyorp,2)|,
with subscripts 1 = inner and 2 = outer. We find that this quantity
is ∼1.4–3.3 (taking into account whether BYORP acts in the
same or opposite directions for both satellites), and therefore
we expect that tidal evolution will dominate the relative rate of
the satellites’ orbits as they converge. This calculation assumes
current semimajor axes, Qp = 100, and a monolith tidal Love
number model for the primary. If BYORP causes the orbits
of the satellites to converge, then joint evolution by tides and
BYORP will result in a higher relative migration rate than the
tides-only evolution considered here. If BYORP works against
tides, then their joint evolution will be slower. Given the order-
of-magnitude uncertainties already inherent in unknown tidal
parameters such as Q and k as well as uncertainties in whether
BYORP will expand or contract the satellites’ orbits, we do not
include the effects of BYORP in our simulations.

9
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6.2. 3:1 Eccentricity-type Resonances

The 3:1 mean-motion resonance is the most recent low-
order resonance encountered by Remus and Romulus, and here
we briefly describe the relevant eccentricity-type resonances
that can affect orbital eccentricities. We do not consider 3:1
inclination-type resonances in our simulations. There are three
eccentricity-type resonances for the 3:1 mean-motion reso-
nance: e2

2 resonance which perturbs only the outer satellite’s
eccentricity, e1e2 mixed resonance which perturbs both satel-
lites’ eccentricities, and the e2

1 resonance which perturbs only
the inner satellite’s eccentricity. Subscripts 1 and 2 represent
Remus (inner) and Romulus (outer), respectively.

The relevant resonance arguments φ for these three 3:1
eccentricity resonances are (e.g., Murray & Dermott 1999)

e2
2 : φ = 3λ2 − λ1 − 2�2, (10)

e1e2 : φ = 3λ2 − λ1 − �1 − �2, (11)

e2
1 : φ = 3λ2 − λ1 − 2�1, (12)

where λ is the mean longitude and � is the longitude of
pericenter. Occupation of any of these resonances requires
libration of the considered resonance argument (exact resonance
occurs when φ̇ = 0). Note that λ̇ = n, where n is the mean
motion and is related to the semimajor axis.

The resonance arguments given in Equations (10)–(12) are
listed in the order that these resonances are encountered due
to tidal migration: first the e2

2 (at a1/a2 ≈ 0.481), then the
e1e2 (at a1/a2 ≈ 0.483), and lastly the e2

1 (at a1/a2 ≈ 0.485),
where the resonance locations a1/a2 must be adjusted depending
on the exact starting values of a1 and a2. These resonances
are not located at the same semimajor axes; differentiation of
Equations (10)–(12) shows that the various resonant arguments
will librate at different values of n1 and n2. Such “resonance
splitting” occurs because perturbations such as the effect of
primary J2, and to a lesser degree (in this case, 2–3 orders
of magnitude smaller), secular perturbations, causes � of
the satellites to precess at different rates. In Section 6.4, we
will discuss the capture of Remus and Romulus into any of
these resonances. Next, we describe our methods regarding the
implementation of tidal effects using direct N-body integrations.

6.3. Methods

Our methods and implementation for simulating a 3:1 res-
onant passage due to tidal migration are as follows. We use
an N-body integrator with a variable time step Bulirsch–Stoer
algorithm from Mercury (Chambers 1999). We implement ad-
ditional terms in the equations of motion due to the effects
of tides on semimajor axis and eccentricity by following the
numerical methods described in Appendix A of Lee & Peale
(2002). Specifically, we used Equations (4) and (6) to model the
tidal evolution in a time of a and e. We have tested our imple-
mentation by reproducing results in Lee & Peale (2002) as well
as matching the analytical expectations (Equations (4) and (6))
of semimajor axis drift and eccentricity evolution outside of
resonance.

Actual tidal timescales can be computationally prohibitive,
and we incorporate a “speed up” factor to artificially increase the
rate of tidal evolution in our simulations. Such speed up factors
have also been numerically implemented in previous studies of
tidal migration (i.e., Ferraz-Mello et al. 2003; Meyer & Wisdom

2008; Zhang & Nimmo 2009), where they adopted values up to
1000 and found that their results were not sensitive to the choice
of speed up factor in the range 1–1000. In our implementation,
we incorporate a speed up factor by multiplying Equations (4)
and (6) by typical speed up factors of 100–1000. In agreement
with previous studies, we find that our results are not sensitive
to the choice of speed up factors up to 1000 for select test cases.

We integrate the system for artificial durations of 1–10 Myr,
which, because of the speed up factors, represent 1 Gyr of tidal
evolution. Our figures show the tidal evolution timescale, not the
artificial timescale used in the integrator. The 1 Gyr timescale
is constrained by the lifetime of Sylvia’s satellite system. Work
by Vokrouhlický et al. (2010) investigating the collisionally
born asteroid family related to Sylvia suggests that the family
members (and hence the satellites) are at least 108 years old.
We can also estimate the lifetime of the satellites by considering
how much time would pass before a collision occurred between
one of the satellites and another main belt asteroid. We estimate
this timescale to be roughly 109 years (Farinella et al. 1998;
Bottke et al. 2005) by assuming that the smallest satellite has
a diameter of 10.6 km, as suggested by our orbital fit analysis
(Section 3). Accordingly, we consider 1 Gyr to be a reasonable
time within which tidal evolution can have taken place, and we
typically do not run simulations longer than 1 Gyr.

For the default set of initial conditions in our simulations, the
masses of all bodies and primary oblateness (J2) are taken from
Table 4. Simulations are started with coplanar and nearly circular
(e = 0.001) orbits. Angles for the argument of pericenter and
mean anomaly are given a random value from 0◦ to 360◦.
Initial semimajor axes for Remus and Romulus are 654 km and
1352.5 km, just inside the 3:1 resonance location. To simulate
tidal evolution, we also need to adopt values for the Love number
k and tidal dissipation factor Q. To calculate the Love number,
we use the tidal monolith model for these bodies (see, e.g.,
Goldreich & Sari 2009). For all bodies, we assume Q = 100, a
reasonable assumption for rocky monoliths.

We also ran an additional sets of simulations where we varied
the initial eccentricities of both satellites (0.001–0.050), primary
J2 (5%–10% lower and higher than its best-fit value), satellite
masses that spanned the range of adopted 1σ confidence inter-
vals (low−high, low−low, high−low, and high−high combina-
tions), and repeats of the nominal configuration for additional
randomized initial angles of the argument of pericenter and
mean anomaly. We did not specifically vary the tidal quantity
k/Q, as the effect of varying k/Q is the same as varying the
speed up factor since they both contribute linearly to ȧ and ė.
We describe our results in the next subsection.

6.4. Results: Evolutionary Pathways

Here, we describe the results stemming from our simulations
of a 3:1 resonant passage between Remus and Romulus.
These results suggest three evolutionary pathways: capture
into resonance with no escape, temporary capture followed by
escape, and no capture. We describe each of these evolutionary
pathways in the following paragraphs.

6.4.1. Capture with no Escape

This scenario, where resonant capture occurs with no escape
during the 1 Gyr evolution, was typically observed for the e2

2
resonance. An example of such evolution is shown in Figure 7.
Given that (1) the satellites are not currently observed in 3:1
resonance and (2) these simulations show no escape from such
resonant capture within a reasonable system lifetime of 1 Gyr,
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Figure 7. Example of a simulation with resonant capture into e2
2 and no

escape. Dots show results from numerical simulations for the libration angle
φ and eccentricity e as a function of time. Subscripts 1 and 2 represent
the inner and outer satellites, respectively. The simulation was started at
a1/a2 = 654.0/1352.5 = 0.4835 and reached the e2

2 resonance at a1/a2 =
655.2/1352.5 = 0.4844, roughly 8 Myr after the start of the simulation. The
outer satellite’s eccentricity will continue to increase due to resonance effects,
but the tidal damping effects will increase as the eccentricity grows, such that
an equilibrium value for e may be reached.

we conclude that this evolutionary pathway did not occur and
we do not discuss it further.

6.4.2. Temporary Capture Followed by Escape

In this event, resonant capture occurs and is followed by
eventual escape due to growth of the resonant argument.
This was a common outcome for each of the three types of
resonances. Examples of such evolution are shown in Figure 8.
Final eccentricities at the end of our simulations ranged from
their initial values up to ∼0.3. We are unable to place lower
bounds on the final eccentricities because we cannot assess how
long the satellites may have been captured in the resonance. If
high eccentricities resulted from temporary resonance capture,
then sufficient eccentricity damping may have subsequently
occurred to bring high post-resonance eccentricities to low
observed eccentricities.

We investigated whether such eccentricity damping was
possible within a conservative time frame of 1 Gyr. To do so, we
integrated the ȧ and ė tidal expressions in Equations (4) and (6)
and considered all Love number models (Equations (7)–(9)),
various post-resonance eccentricities up to 0.25, and tidal
dissipation Q values (10–1000). We assumed that both satellites
had densities equal to that of the primary (1.29 g cm−3).

For Remus, we find that eccentricity damping to observed
values is only possible if we assume rubble pile Love number
models (either k ∝ R or k ∝ 1/R) for Remus (there is no
restriction on the primary). If we make this assumption, damping
to observed values is possible by adopting reasonable values of
Qp = 100 and Qs = 10–100. When we assume that Remus
is monolithic, even when we adopt very favorable conditions
for eccentricity damping,6 tidal damping to its observed value

6 Qp = 1000 and Qs = 10. Inspection of Equation (6) shows that damping
can be sped up by making Qp/Qs as large as possible.

is only possible if we assume a post-resonance eccentricity
of ∼0.032 or less. These calculations suggest that if its post-
resonance eccentricity exceeded ∼0.032, it is likely that Remus
may have an interior structure more akin to a rubble pile
aggregate than a monolithic body.

For Romulus, damping to observed eccentricities is possible
only if the eccentricity was barely affected while in the reso-
nance (as well as assuming favorable dissipations conditions:
Qp = 1000 and Qs = 10). If the eccentricity reached even
modest values (∼0.023) we find that none of the Love num-
ber models and reasonable Q = 10–1000 values can damp
eccentricities to even the highest possible observed eccentricity
(0.011) allowed by our fit uncertainties. Therefore, if temporary
capture in the 3:1 occurred, it must not have lasted long enough
for the eccentricity of Romulus to reach values of ∼0.023. While
such a scenario does not entirely rule out the e2

2 and e1e2 reso-
nances, it does seem to place bounds on the acceptable increase
in eccentricity due to the 3:1 resonance.

6.4.3. No Capture

In this case, all eccentricity-type resonances are encountered
and none result in capture. For orbits that are slowly converging
toward each other, capture is possible depending on their initial
eccentricities. When the pre-encounter eccentricity is below
a critical eccentricity, capture is guaranteed. When the pre-
encounter eccentricity exceeds a critical eccentricity, capture
becomes a probabilistic event. For the 3:1 resonance, critical
eccentricities can be estimated as (Murray & Dermott 1999)

e1,crit =
[

3

32f1

(
32/3 Mp

M2
+ 34/3 M1

M2

Mp

M2

)]−1/2

, (13)

e2,crit =
[

3

32f2

(
32/3 M2

M1

Mp

M1
+ 9

Mp

M1

)]−1/2

, (14)

where subscripts p, 1, and 2 represent the primary, Remus, and
Romulus, respectively. The f1 and f2 terms represent functions
of Laplace coefficients b

(j )
1/2(α). They are (e.g., see Murray &

Dermott 1999)

f1 = 1

8
(−5j + 4j 2 − 2αD + 4jαD + α2D2)b(j )

1/2(α), (15)

f2 = 1

8
(2 − 7j + 4j 2 − 2αD + 4jαD

+ α2D2)b(j−2)
1/2 (α) − 27

8
α, (16)

where j = 3 for the 3:1 resonance, α = a1/a2 is the ratio of
semimajor axes, and D = d/dα is the differential operator. The
quantity −27α/8 in Equation (16) is the indirect term for the
case when M2 > M1.

Using Equations (13) and (14), we calculate the critical
eccentricities to be e1,crit = 0.00864 and e2,crit = 0.00410.
Even for initial e1 values that are low (e.g., osculating value
of 0.001), e1 < e1,crit will not always be satisfied because short-
term eccentricity fluctuations due to primary J2 will inflate e1
excursions up to ∼0.014 (assuming a1 = 654 km in Equation (3)
of Section 5). For Romulus, marooned farther from the primary
such that J2 effects are lessened, if the pre-encounter eccentricity
is low enough then it is possible that the eccentricity will
always remain less than the critical eccentricity. These analytical
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Figure 8. Examples of simulations with temporary resonant capture followed by escape. Dots show results from numerical simulations for the libration angle φ and
eccentricity e as a function of time. Subscripts 1 and 2 represent the inner and outer satellites, respectively. Left-side plots: results of a simulation with temporary
capture into e1e2 resonance, where both e1 and e2 increase. Initial conditions for eccentricity are e1 = 0.001 and e2 = 0.04. Right-side plots: results of a simulation
with temporary capture into e2

1 resonance, where only e1 increases. Initial conditions for eccentricity are e1 = 0.007 and e2 = 0.04.

arguments are in agreement with the results from our numerical
experiments.

If we contemplate scenarios in which resonant capture never
occurred in Sylvia’s past, then we must adopt the critical
eccentricities as lower limits on the past eccentricities of
Remus and Romulus. Their past eccentricities cannot be lower
than these limits because otherwise capture would have been
guaranteed. We note that these lower limit eccentricities are
lower than the nominal observed eccentricities (Table 4), and
hence this evolutionary pathway is a plausible scenario without
requiring any significant modifications in eccentricity over time.

To summarize these results, from these three pathways we find
that both (1) temporary capture followed by escape and (2) no
capture are plausible scenarios that occurred when Remus and
Romulus encountered 3:1 resonance. If pathway (1) occurred,
our calculations of the necessary damping required to bring
post-resonance eccentricities to observed values show this is
possible for Remus but may be prohibitively long for Romulus,
depending on its post-resonance eccentricity. Therefore, it
is unlikely that a substantial increase in the eccentricity of
Romulus occurred, even if the system was temporarily captured
in the e2

2 or e1e2 resonances. If pathway (2) occurred, we can set
lower limits on past eccentricities of both satellites to be equal
to their critical eccentricities.

7. CONCLUSIONS

The goals of this study were to characterize Sylvia’s current
orbital configuration and masses as well as to illuminate the past
orbital evolution of this system. Our work can be summarized
as follows.

1. We reported new astrometric observations of Sylvia in 2011
that increased the number of existing epochs of astrometry
by over 50%. These new observations extended the existing
baseline of observations to 7 years for Remus and to
10 years for Romulus.

2. We fit a fully dynamical three-body model to the available
astrometric data. This model simultaneously solved for or-
bits of both satellites, individual masses, and the primary’s
oblateness (Table 4). We found that the primary has a den-
sity of 1.29 ± 0.39 g cm−3 and is oblate with a J2 value
in the range of 0.0985–0.1. Constraints on satellite radii
can be obtained from the mass determinations by assuming
that the satellites have a bulk density equal to that of the
primary; we find ∼4.5–6.1 km for Remus and ∼2.6–8.2 km
for Romulus. These ranges would have to be modified if
the actual density of the primary or of the satellites was
different from the nominal value assumed here. The or-
bits of the satellites are relatively circular. We find that the
primary’s spin pole is best fit when aligned to Romulus’ or-
bital pole, and that the satellites’ orbit poles are coplanar to
within 1 deg.

3. We numerically investigated the short-term and long-term
stability of the orbits of Sylvia’s satellites. There are
periodic fluctuations in eccentricity for both satellites, most
notably for the inner satellite Remus. We verified that these
eccentricity excursions are due to the effects of primary
oblateness. From long-term integrations we found that the
system is in a very stable configuration, in agreement with
previous investigations.

4. We studied the past orbital evolution of Sylvia’s satellites,
including the most recent low-order mean-motion reso-
nance crossing, which is 3:1. We used direct N-body in-
tegrations with forced tidal migration to model such an
encounter. To examine the case of resonant capture fol-
lowed by escape, we calculate the tidal damping timescale
to go from the post-encounter eccentricity to the ob-
served value. Using available tidal models, we find that
the damping timescale for Romulus can be prohibitively
large if its post-resonance eccentricity exceeded ∼0.023.
This suggests that the system crossed the e2

2 and e1e2 reso-
nances without capture, or that it was not captured in these
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resonances for a sufficient duration to substantially increase
the eccentricity of Romulus. Similar timescale constraints
from tidal damping also imply that Remus may have a rub-
ble pile structure if its post-resonance eccentricity exceeded
∼0.032. Alternatively, if no capture in any resonance oc-
curred then we are able to set lower limits on their past
eccentricities (e1 = 0.00864 and e2 = 0.00410).

The detailed characterization of Sylvia presented in this paper
has allowed for analyses of its orbital evolution. Such studies
of triple systems are important in order to understand their
key physical properties, orbital architectures, and intriguing
evolutionary histories.
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